

# Millimeter-Wave Power Performance of Ion-Implanted $\text{In}_x\text{Ga}_{(1-x)}\text{As}$ on GaAs Metal Semiconductor Field-Effect Transistors

M. Feng, *Fellow, IEEE*, C. L. Lau, P. Brusenback, and L. J. Kushner, *Member, IEEE*

**Abstract**— Millimeter-wave power performance achieved by ion-implanted  $\text{InGaAs-GaAs}$  MESFET's with a gate length of 0.25 micron is described. When the device with a gate width of 150 micron was measured at 22 GHz, an output power of 95 mW, a power-added efficiency of 33%, and an associated gain of 7.3 dB were achieved. At an output power of 93 mW, a power-added efficiency of 25%, and an associated gain of 4 dB were obtained at 44 GHz. When the device with a gate width of 200 micron was measured at 60 GHz, an output power of 121 mW with 3 dB associated gain and 13% power-added efficiency were achieved.

## I. INTRODUCTION

THE SOLID-STATE three-terminal power device at 20, 44, and 60 GHz is an important research area due to its application in the down-link, up-link and cross-link of satellite communication. The first result of 60 GHz amplifier using ion-implanted GaAs metal semiconductor field effect transistors (MESFET's) achieving a small signal gain of 6 dB was reported in 1984 [1], but the device result lacked significant output power. Until 1988, GaAs power MESFET on MBE grown epitaxial layers with a gate width of 75 micron achieved 53-mW output power, 5.2-dB gain, and 34% power-added efficiency at 35 GHz [2]. Also in 1988, a power amplifier using GaAs MESFET on MBE grown epitaxial layers achieved 95 mW output power, 3.6-dB gain, and 11% power-added efficiency at 58 GHz [3]. This work reports the millimeter-wave power performance of ion-implanted  $\text{InGaAs-GaAs}$  MESFET's with 0.25 micron gates.

## II. MATERIAL GROWTH AND DEVICE FABRICATION

The  $\text{InGaAs}$  material was known to have higher peak drift velocity compared to GaAs material due to large energy separation between  $\Gamma$  and  $L$  valleys. The  $\text{InGaAs}$  material was grown directly on GaAs substrate by MOCVD technique. The  $\text{InGaAs-GaAs}$  material structure consisted of a 600-Å layer of  $\text{In}_{0.18}\text{Ga}_{0.82}\text{As}$  direct deposited on GaAs substrate first and

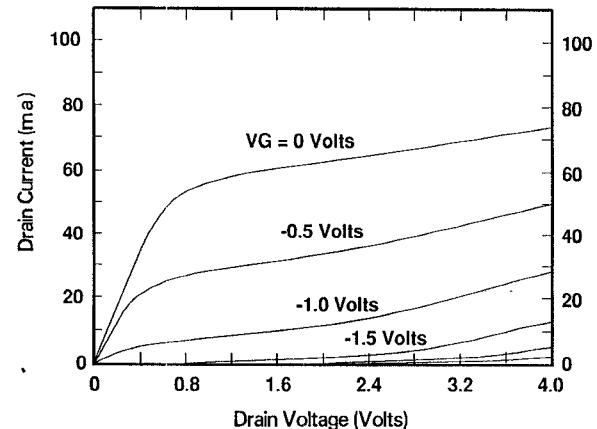



Fig. 1. I-V characteristics of ion-implanted  $\text{InGaAs-GaAs}$  MESFET with a 0.25 x 150 micron gate.

a 1000 Å layer of  $\text{In}_x\text{Ga}_{(1-x)}\text{As}$  with the indium composition linearly graded from  $x = 0.18$  to  $X = 0$  toward the surface. The gate-to-drain leakage The active channel was formed by ion implantation into the  $\text{InGaAs}$  layer and subsequent capless anneal to activate the implanted species ( $\text{Si}^{+28}$ ). The channel implant is formed with a penetration depth of 1500 Å to achieve a peak carrier concentration of  $1 \times 10^{18} \text{ cm}^{-3}$ . The surface implant ( $n^+$  layer) is achieved with a penetration depth of 600 Å to achieve a peak carrier concentration of  $2 \times 10^{18} \text{ cm}^{-3}$ . Electron-beam direct write lithography was used to define the 0.25 micron "T" shaped gates with a width of 150 and 200 microns. The Ti-Pt-Au gate metal was evaporated after recess etch. The drain to source spacing was 2 microns with the gate offset toward the source to reduce source resistance.

## III. DC AND RF DEVICE PERFORMANCE

The drain current versus gate voltage for a typical 0.25 x 150 micron implanted  $\text{InGaAs}$  MESFET is shown in Fig. 1. The drain to source voltage was swept from 0 to 4 V while the gate voltage was stepped at  $-0.5$  V per step. The transconductance is 437 mS/mm and current density is 480 mA/mm at zero gate bias and  $V_{ds}=2$  V. The gate to drain breakdown voltage is greater than 7 V.

Manuscript received October 21, 1991.

M. Feng is with the Department of Electrical and Computer Engineering, Center for Compound Semiconductor Microelectronics, University of Illinois, Urbana, IL 61801.

C. L. Lau and P. Brusenback are with Ford Microelectronics Inc., 9965 Federal Drive, Colorado Springs, CO 80921.

L. J. Kushner is with the MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02173-9108.

IEEE Log Number 9200736.

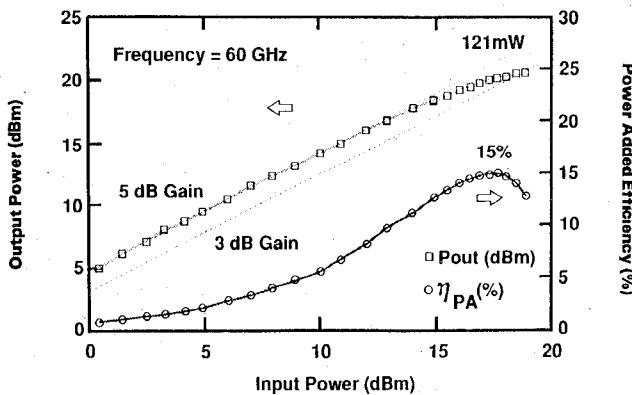



Fig. 2. Output power and power-added efficiency of a  $0.25 \times 200$  micron-gate MESFET measured at 60 GHz versus input power. Device was tuned for the maximum output power.

The current-gain cutoff frequency,  $f_t$ , for the MESFET's was obtained by extrapolating  $|H21|$  to unity gain with a  $-6$  dB/octave slope. The MESFET with a  $0.25 \times 150$  micron gate used in this work has a measured  $f_t = 90$  GHz and  $f_{max} = 160$  GHz at  $V_{ds} = 4.0$  V. The peak measured  $f_t$  occurring at  $V_{ds} = 1.6$  V is 104 GHz without correction and is estimated to be 131 GHz with pad capacitance ( $0.0169 \text{ pF}$ ) correction. The MESFET with a  $0.25 \times 200$  micron gate used in this work has a measured  $f_t = 94$  GHz and  $f_{max} = 165$  GHz at  $V_{ds} = 4.0$  V. A peak measured value of  $f_t = 112$  GHz occurred at  $V_{ds} = 1.6$  V without pad correction. All the devices tested here are nonpassivated FET's. The extrinsic transconductance  $g_m$  is  $428 \text{ mS/mm}$  and the standard deviation is  $41 \text{ mS/mm}$ . The average  $f_t$  is  $102$  GHz and the standard deviation is  $12$  GHz. The RF yield is better than  $85\%$ .

Three-section Q-band and V-band fixtures were used to test the MESFET devices. They consisted of two waveguide-to-microstrip transitions and a carrier containing the FET under test. The fixture transition loss measured on an HP8510 ANA was  $0.25$  dB per transition for Q-band and  $0.35$  dB for V-band. The  $E$ - and  $H$ -plane tuners had a loss of  $0.14$  dB per tuner for Q-band and  $0.22$  dB for V-band. There is no specific reason to choose  $200 \mu\text{m}$  for 60 GHz operation other than we are interested in  $P_{out} > 100$  mW.

The MESFET's with a  $0.25 \times 200$  micron gate were tuned for maximum output power at 60 GHz where the dc-bias conditions were set with  $V_{ds} = 4.4$  V and  $V_{gs} = -0.5$  V. The output power and power-added efficiency versus input power are plotted in Fig. 2. A saturated power of  $121$  mW with  $3$ -dB associated gain and  $13\%$ -power-added efficiency was measured at 60 GHz. The reason for lower power-added efficiency is due to the unit gate width of  $100 \mu\text{m}$  that degrades the signal at 60 GHz.

The MESFET's with a  $0.25 \times 150$  micron gate were tuned for maximum output power at 44 GHz where the dc-bias conditions were set at  $V_{ds} = 4$  V and  $V_{gs} = -0.7$  V. The output power and power-added efficiency versus input power are plotted in Fig. 2. An output power of  $93$  mW, an associated gain of  $4$  dB and a power-added efficiency of  $25\%$  were measured. A saturated output power of  $97$  mW was achieved at 44 GHz. The MESFET was then tuned for maximum power-

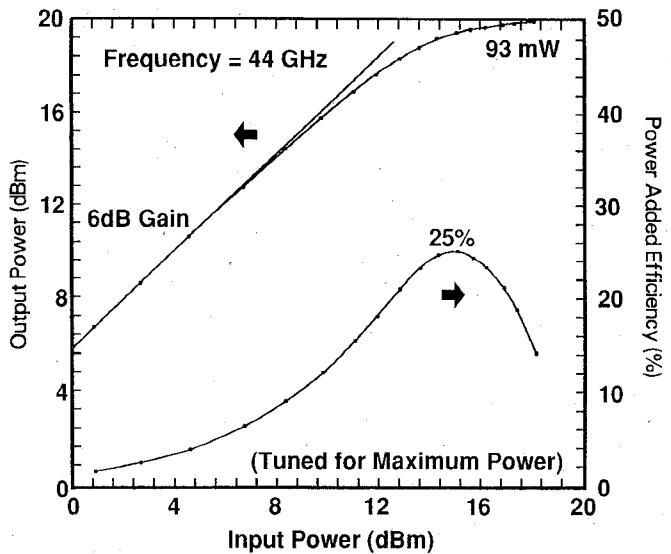



Fig. 3. Output power and power-added efficiency of  $0.25 \times 150$  micron-gate MESFET's measured at 44 GHz versus input power. Device was tuned for the maximum output power.

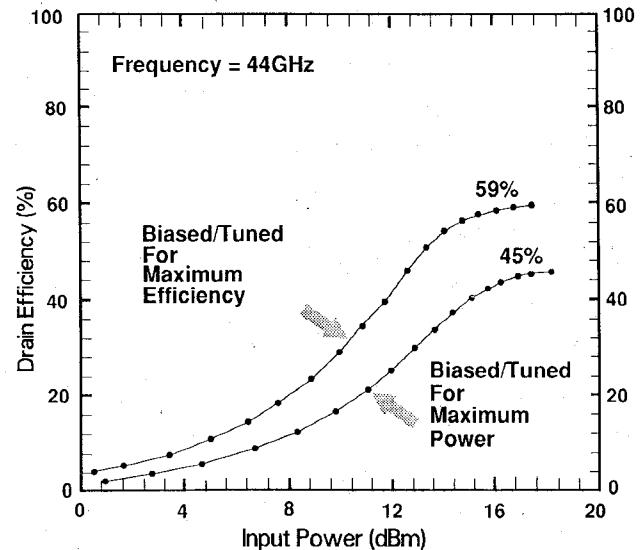



Fig. 4. 44 GHz drain efficiency of a  $0.25 \times 150$  micron gate ion-implanted InGaAs-GaAs MESFET.

added efficiency at 44 GHz where the dc-bias conditions were set at  $V_{ds} = 3.2$  V and  $V_{gs} = -0.86$  V. A maximum power-added efficiency of  $33\%$ , an output power of  $65$  mW and an associated gain of  $4.5$  dB were obtained at 44 GHz.

A similar  $0.25 \times 150$  micron InGaAs-GaAs MESFET from the same wafer was evaluated at 22.25 GHz by MIT Lincoln Laboratory. When the device was tuned for maximum output power where the dc-bias conditions were set at  $V_{ds} = 4.3$  V and  $V_{gs} = -0.62$  V, an output power of  $95$  mW, a power-added efficiency of  $33\%$  and an associated power gain of  $7.3$  dB were achieved. When the same device was tuned for maximum power-added efficiency where the dc-bias conditions were set at  $V_{ds} = 3.8$  V and  $V_{gs} = -1$  V, an output power of  $76$  mW, a power-added efficiency of  $41\%$  and an associated gain of  $7.8$  dB were achieved.

The device drain efficiency at 44 GHz versus input power is plotted in Fig. 4. The drain efficiency can be as high as 45% for the maximum output power conditions and can be as high as 59% for the maximum power-added efficiency conditions. The drain efficiency is about the same for the devices measured at 22 and 44 GHz since the maximum output power of the devices is the same in both cases (93 mW at 44 GHz and 95 mW at 22 GHz). The difference is associated power gain (4 dB at 44 GHz and 7.3 dB at 22 GHz).

Hence, to improve the power-added efficiency for millimeter wave power devices, one has to improve the power gain of the devices and maximize the drain efficiency. Power gain of the MESFET's can be improved by using short unit gate widths and multiple gate fingers, for example, a unit gate finger of 50 micron instead of 75 micron at 44 GHz and a unit gate finger of 40–50 micron instead 100 micron at 60 GHz. Drain efficiency can be improved by increasing the breakdown voltage, decreasing the knee voltage, and optimizing the variation of drain current with gate voltage [4].

#### IV. CONCLUSION

In conclusion, we have characterized the ion-implanted InGaAs–GaAs power MESFET's achieving excellent output power, associated gain and power-added efficiency at 22 and 44 GHz for  $0.25 \times 150$ -micron MESFET's at 60 GHz for a  $0.25 \times 200$ -micron MESFET. These results demonstrate that the cost effective ion implantation technology is suitable for making power devices, amplifiers and monolithic integrated circuits in the millimeter-wave frequency range.

#### REFERENCES

- [1] M. Feng, H. Kanber, V. K. Eu, E. Watkins, and L. R. Hackett, "Ultrahigh frequency operation of ion-implanted GaAs MESFET," *Appl. Phys. Lett.*, vol. 44, pp. 231–233, 1984.
- [2] B. Kim, M. Wurtele, H. D. Shih, and H. Q. Tserng, "GaAs Power MESFET with 41-Percent Power-Added Efficiency at 35 GHz," *IEEE Electron Device Lett.*, vol. 9, pp. 57–58, Feb. 1988.
- [3] H. L. Hung, G. M. Hegazi, T. T. Lee, F. R. Phelleps, J. Singer, and H. C. Huang, "V-band GaAs MMIC low-noise and power amplifiers," *IEEE Trans. Microwave Theory Tech.*, vol. 36, pp. 1966–1975, Dec. 1988.
- [4] L. J. Kushner, *Microwave J.*, vol. 32, p. 103, Oct. 1989.